
Algebraic Property Graphs

Joshua Shinavier1 Ryan Wisnesky2 Joshua G. Meyers2

1Uber Technologies, Inc.1

2Conexus AI

July 19, 2022

1For the toolkit, applications, and original formulation of APG. The author’s current affiliation is LinkedIn Corporation.

Overview

Abstract: We present a case study in applied category theory
written from the point of view of an applied domain: the
formalization of the widely-used property graphs data model in an
enterprise setting using elementary constructions from type theory
and category theory, including limit and co-limit sketches.
Observing that algebraic data types are a common foundation of
most of the enterprise schema languages we deal with in practice,
for graph data or otherwise, we introduce a type theory for
algebraic property graphs wherein the types denote both algebraic
data types in the sense of functional programming and join-union
E/R diagrams in the sense of database theory. We also provide
theoretical foundations for graph transformation along schema
mappings with by-construction guarantees of semantic consistency.
Our data model originated as a formalization of a data integration
toolkit developed at Uber which carries data and schemas along
composable mappings between data interchange languages such as
Apache Avro, Apache Thrift, and Protocol Buffers, and graph
languages including RDF with OWL or SHACL-based schemas.

Graph data models

▶ Property Graphs: edge-labeled and vertex-labeled graphs with
properties. See Apache TinkerPop and graph databases such
as Neo4j

▶ RDF: W3C standard graph data model. Graphs are sets of
subject/predicate/object triples. Various schema formalisms
(RDFS, OWL, SHACL, etc.)

▶ Hypergraphs: variations on the mathematical concept of a
hypergraph. Less common than property graphs, but more
compatible with relational databases

Property graph elements

▶ Vertex, edge: as in a classic labeled, directed multigraph

▶ Vertex property, edge property: key/value pair attached to a
vertex or edge

▶ Metaproperty: property attached to another property

▶ etc.

Design considerations:

▶ Formalize the labeled property graph data model

▶ Formalize data interchange languages including Protobuf,
Thrift, and Avro

▶ Serve as a standard, unifying data model for Uber

▶ Serve as a bridge between graph and non-graph data sources

Applications:

▶ Basis for reusable, standardized data types

▶ Mapping of common types into multiple data languages

▶ Mapping of schemas and data across languages

▶ Language-agnostic schema and data validation

▶ Graph (PG and RDF) construction

Algebraic data types in practice

Apache
Thrift

Apache
Avro

Protocol
Buffers v3

GraphQL
SDL

product types yes yes yes yes
sum types yes yes yes yes
interfaces yes
enumerations yes yes yes yes
optionals yes yes yes
typedefs yes
defaults yes yes yes yes
constants yes
lists/arrays yes yes yes yes
maps yes yes yes
sets yes

Figure: Comparison of selected data exchange languages

APGs: Definition 1

Fix a set P of primitive types p with extensions PV(p).

An APG schema S consists of:

▶ L : Set

▶ σ : L → T , where

T ∋ t ::= 0 | 1 | t1 + t2 | t1 × t2 | Prim p (p ∈ P)

| Lbl l (l ∈ L)

Given an APG schema S = (L,σ), an APG on S consists of:

▶ E : L → Set

▶ For each l ∈ L, a function υl : E(l) → V (σ(l)), where
V : T → Set is defined as follows:

V (0) := 0 V (1) := 1

V (Prim p) := PV(p) V (Lbl l) := E(l)

V (t1 + t2) := V (t1) + V (t2)

V (t1 × t2) := V (t1)× V (t2)

Let P := {Integer}, PV(Integer) = Z.

Example schema S = (L,σ):

L := {User, Trip, PlaceEvent, Place}
σ(User) := σ(Place) := 1

σ(PlaceEvent) := Place× Integer

σ(Trip) := User× User

× (1 + PlaceEvent)× (1 + PlaceEvent)

Example APG on S:

E(User) := {u1, u2, u3}
E(Trip) := {t1, t2}

E(PlaceEvent) := {e1, e2, e3}
E(Place) := {p1, p2, p3}
υUser(u1) := υUser(u2) := υUser(u3) := ()

υPlace(p1) := υPlace(p2) := υPlace(p3) := ()

υTrip(t1) := (u1, u2, inr(e1), inr(e2))

υTrip(t2) := (u1, u3, inr(e3), inl(()))

υPlaceEvent(e1) := (p1, 1602203601)

υPlaceEvent(e2) := (p2, 1602203948)

υPlaceEvent(e3) := (p2, 1602204122)

u2 t1
rideroo driver //

pickup

~~
dropoff

��

u1 t2
rider //driveroo

pickup

��

u3

p1 e1
place
oo e2

place
// p2 e3

place
oo

APGs: Definition 2 (type-theoretic flavor)

Fix a set P of primitive types p with extensions PV(p).

An APG schema S consists of:

▶ L : Set

▶ σ : L → T , where

T ∋ t ::= 0 | 1 | t1 + t2 | t1 × t2 | Prim p (p ∈ P)

| Lbl l (l ∈ L)

Given an APG schema S = (L,σ), an APG on S consists of:

▶ E : Set

▶ λ : E → L
▶ υ : E → V where

V ∋ (v : t) ::= () : 1 | inlt2 (v :t1) : t1 + t2

| inrt1 (v :t2) : t1 + t2

| (v1:t1, v2:t2) : t1 × t2

| Prim v t : t (t ∈ P, v ∈ PV(p))

| Elmt e : λ(e) (e ∈ E)

such that, where τ : V → T is defined by by τ (v : t) := t,

E

υ

��

λ // L

σ

��
V τ // T .

Let P := {Integer}, PV(Integer) = Z.

Example schema S = (L,σ):

L := {User, Trip, PlaceEvent, Place}
σ(User) := σ(Place) := 1

σ(PlaceEvent) := Place× Integer

σ(Trip) := User× User

× (1 + PlaceEvent)× (1 + PlaceEvent)

Example APG on S :

E := {u1, u2, u3, t1, t2, e1, e2, e3, p1, p2, p3}
λ(u1) := λ(u2) := λ(u3) := User λ(t1) := λ(t2) := Trip

λ(p1) := λ(p2) := λ(p3) := Place

λ(e1) := λ(e2) := λ(e3) := PlaceEvent

υ(u1) := υ(u2) := υ(u3) := υ(p1) := υ(p2) := υ(p3) := ()

υ(t1) := (u1, u2, inr(e1), inr(e2))

υ(t2) := (u1, u3, inr(e3), inl(()))

υ(e1) := (p1, 1602203601) υ(e2) := (p2, 1602203948)

υ(e3) := (p2, 1602204122)

u2 t1
rideroo driver //

pickup

~~
dropoff

��

u1 t2
rider //driveroo

pickup

��

u3

p1 e1
place
oo e2

place
// p2 e3

place
oo

APGs: Definition 3: APGs as Coalgebras

A APG schema S consists of:

▶ L : Set

▶ a polynomial functor F : SetL → SetL

(This definition includes non-computable schemas, but it is
mathematically very nice.)

Given an APG schema S = (L,F), an APG on S consists of:

▶ E : L → Set

▶ υ : E ⇒ F (E)

In other words, it is a coalgebra of F .

(This definition includes non-computable APGs, but it is
mathematically very nice.)

Now we can define morphisms of APGs on S simply as morphisms
of coalgebras of F .

Example schema S = (L,F):

L := {User, Trip, PlaceEvent, Place}

F




User 7→ EUser

Trip 7→ ETrip

PlaceEvent 7→ EPlaceEvent

Place 7→ EPlace


 :=


User 7→ 1
Trip 7→ 1

PlaceEvent 7→ EPlace × Z
Place 7→ EUser × EUser × (1 + EPlaceEvent)× (1 + EPlaceEvent)



Example APG on S :

E(User) := {u1, u2, u3}
E(Trip) := {t1, t2}

E(PlaceEvent) := {e1, e2, e3}
E(Place) := {p1, p2, p3}
υUser(u1) := υUser(u2) := υUser(u3) := ()

υPlace(p1) := υPlace(p2) := υPlace(p3) := ()

υTrip(t1) := (u1, u2, inr(e1), inr(e2))

υTrip(t2) := (u1, u3, inr(e3), inl(()))

υPlaceEvent(e1) := (p1, 1602203601)

υPlaceEvent(e2) := (p2, 1602203948)

υPlaceEvent(e3) := (p2, 1602204122)

u2 t1
rideroo driver //

pickup

~~
dropoff

��

u1 t2
rider //driveroo

pickup

��

u3

p1 e1
place
oo e2

place
// p2 e3

place
oo

APGs: Definition 4: APGs as models

2See Cockett and Seely 2001 for the details of this construction. We also could choose to require that in CS , the canonical maps t × u + t × v → t × (u + v) and t → t + 0 are
isomorphisms, making CS a distributive category. This has no effect on the models of CS , since Set is distributive, but it does afford additional morphisms of theories (see next slide). The
downside is that it complicates term rewriting.

Let S = (L : Set,σ : L → T) be an APG schema.

The APG theory CS corresponding to S is the free category CS

with terminal and initial object, products, and coproducts, on the
following generators:2

l ∈ L
(Lbl l) ∈ CS

p ∈ P

(Prim p) ∈ CS

l ∈ L
δl : l → σ(l)

Note that the objects of CS are exactly T .

(We can also extend APGs by adding more generators to CS , e.g.
user-defined functions and constraints.)

Given an APG schema CS , a APG on S is a model of CS , that is, a
functor V : CS → Set which preserves products, coproducts,
terminal object, and initial object, and which sends
Prim p 7→ PV(p).

Note that V is determined completely by where it sends objects of
the form Lbl l and morphisms of the form δl .

(This definition includes non-computable APGs, but it is
mathematically very nice.)

Now we can define morphisms of APGs V and V ′ on S as natural
transformations η : V ⇒ V ′ such that

ηPrim p = idPrim p ηt+t′ = ηt + ηt′ ηt×t′ = ηt × ηt′

Let P := {Integer}, PV(Integer) = Z.

Example schema S = (L,σ):

L := {User, Trip, PlaceEvent, Place}
σ(User) := σ(Place) := 1

σ(PlaceEvent) := Place× Integer

σ(Trip) := User× User

× (1 + PlaceEvent)× (1 + PlaceEvent)

Example APG on S :

V (Lbl User) := {u1, u2, u3}
V (Lbl Trip) := {t1, t2}

V (Lbl PlaceEvent) := {e1, e2, e3}
V (Lbl Place) := {p1, p2, p3}

V (δUser) :=

u1 7→ ()
u2 7→ ()
u3 7→ ()

 V (δPlace) :=

p1 7→ ()
p2 7→ ()
p3 7→ ()


V (δTrip) :=

[
t1 7→ (u1, u2, inr(e1), inr(e2))
t2 7→ (u1, u3, inr(e3), inl(()))

]

V (δPlaceEvent) :=

e1 7→ (p1, 1602203601)
e2 7→ (p2, 1602203948)
e3 7→ (p2, 1602204122)



u2 t1
rideroo driver //

pickup

~~
dropoff

��

u1 t2
rider //driveroo

pickup

��

u3

p1 e1
place
oo e2

place
// p2 e3

place
oo

Morphisms of APG Theories and Schemas

Morphisms of APG theories

A morphism of APG theories CS and CS′ is defined as a functor
Φ : CS → CS′ preserving products, coproducts, terminal object,
initial object, and primitive types.

Now we have a functor ∆ : Theoryop → Cat, where Theory is the
category of APG theories, defined by:

▶ ∆(CS) := S-APG, where S-APG is the category of APGs on
S

▶ ∆(Φ) := (V 7→ V ◦ Φ)

Morphisms of APG schemas

A morphism of schemas (L,F) and (L′,F ′) is a pair

(Φ : SetL
′
→ SetL polynomial functor, ϕ : ΦFS′ ⇒ FSΦ), as

shown:

SetL
′

SetL
′

SetL SetL

FS′

Φ Φ
ϕ

FS

Now we have a functor ∆ : Schemaop → Cat, where Schema is
the category of APG schemas, defined by:

▶ ∆(CS) := S-APG, where S-APG is the category of APGs on
S

▶ ∆(Φ, ϕ) := ((E ′ : L′ → Set,υ′ : E ′ ⇒ F ′(E ′)

7→
(
Φ(E ′),

(
Φ(E ′)

Φ(υ′)
====⇒ ΦF ′(E ′)

ϕE′
===⇒ FΦ(E ′)

))
These morphisms can be translated to morphisms of the
corresponding theories by a functor C : Schema → Theory sending
S 7→ CS and satisfying

Schemaop Theoryop

Cat

C

∆ ∆

Though faithful, C is not full, making morphisms of APG theories
strictly more general than morphisms of APG schemas!

In the paper on arXiv, there is a conjecture on how morphisms of
APG schemas can be generalized in order to extend this functor to
an equivalence.

Simple example

Source schema S = (L,σ):

▶ L := {l}, σ(l) := String× Nat× Integer

Target schema S ′ = (L′,σ′):

▶ L := {l ′}, σ′(l ′) := Nat× String

Theory mapping Φ : CS → CS′ :

▶ Φ(Lbl) l := Lbl l ′

▶ Φ(δl) := l ′
δl′−−→ Nat× String

⟨snd,fst,42◦!⟩−−−−−−−−→
String× Nat× Integer

(Here we assume a user-defined function 42 : 1 → String sending
() 7→ 42).

The functor ∆(Φ) converts APGs on S ′ to schema S by permuting
projections and adding 42.

Stream Example

Streams can be considered as APGs on the schema S = (L,σ):

▶ L := {A}
▶ σ(A) := A+ 1

Finite stream:

▶ E(A) := {e1, e2, e3, . . . , e10}
▶ υ(en) := inl(en+1) for n = 1, . . . , 9

▶ υ(e10) := inr(())

Infinite stream:

▶ E(A) := {e1, e2, e3, . . . , e10}
▶ υ(en) := inl(en+1) for n = 1, . . . , 9

▶ υ(e10) := inl(e4)

A morphism from the theory CS to itself (assume CS is taken as
distributive).

Φ(A) := A× A

Φ(δA) : A× A → A× A+ 1

Φ(δA) :=
(
A× A

δA×δA−−−−→ (A+ 1)× (A+ 1)

(δA+1)×id−−−−−−−→ ((A+ 1) + 1)× (A+ 1)

dist,assoc−−−−−−−→ A× A+ (1 + 1)× A+ A× 1 + (1 + 1)× 1

[id,!,!,!]−−−−→ A× A+ 1
)

We apply this morphism to the finite stream (E ,υ) to obtain the
stream ∆(Φ)(E ,υ) =: (E ′,υ′):

E ′(A) := {(ei , ej) | i, j = 1, . . . , 10}

υ
′((ei , ej)) := inl((ei+2, ej+1)) for i = 1, . . . , 8 and j = 1, . . . , 9

υ
′((ei , e10)) := inr(()) for i = 1, . . . , 10

υ
′((ei , ej)) := inr(()) for i = 9, 10 and j = 1, . . . , 10

We can say that ∆(Φ) converts a stream into a new stream whose
elements are ordered pairs of elements of the old stream, and
where the first element advances twice as fast as in the old stream,
and the second element advances just as in the old stream.

Generalized APGs (GAPGs)

In the language of David Spivak (cf. The Poly Book), polynomial
functors SetL → SetL can be described as bicomodules in Poly

from a discrete category (aka comonoid) to itself: Ly ▷ ◁σ Ly .

We immediately generalize to the case of an arbitrary category L
of labels, to obtain a generalized APG (GAPG) schema, defined as

a category L and a bicomodule (aka prafunctor) L ▷

◁σ L. A
GAPG on the schema (L, σ) is then an ordered pair (E ,υ) where

E is a copresheaf on L, aka a bicomodule L ▷

◁E 0, and υ is a
bicomodule homomorphism:

L 0

L

▷

◁σ

▷

◁E

υ ▷

◁

E

Use cases and implementation possibilities of GAPGs have yet to
be explored.

Morphisms of GAPG schemas
A schema morphism (L, σ) → (L′, σ′) is an ordered pair (Ψ, ψ):

L L

L′ L′

▷ ◁σ

▷

◁

Ψ

▷

◁

Ψ

▷ ◁σ′

ψ

Then the schema morphism (Ψ, ψ) can be applied to a GAPG
(E ′,υ′) on (L′, σ′) in a straightforward way:

L L

L′ L′

0

▷

◁σ

▷

◁
Ψ

▷

◁

Ψ

▷

◁σ′

ψ

▷

◁

E ′

▷

◁

E ′

υ′

